Mathématiques

Question

Je n’arrive pas l’exercice 57 p212 en math 3 eme quelqu’un peut m’expliquer ?
Je n’arrive pas l’exercice 57 p212 en math 3 eme quelqu’un peut m’expliquer ?

1 Réponse

  • Réponse :

    ABC est un triangle rectangle en A tel que AB = 300 et AC = 400. Donc, d'après le théorème de Pythagore, on a :

    BC² = AB² + AC²

    BC² = 300² + 400²

    BC² = 90 000 + 160 000

    BC² = 250 000

    BC = [tex]\sqrt{250000\\}[/tex]

    BC = 500

    Le segment BC mesure 500m.

    On sait que :

    - les points BCD sont alignés.

    - les points ACE sont alignés.

    - (AB) // (DE)

    Donc, d'après le théorème de Thalès, on a :

    [tex]\frac{DE}{AB}=\frac{DC}{BC}=\frac{EC}{AC}[/tex]

    On connaît les longueurs suivantes : AB = 300 ; AC = 400 m ; CE = 1 000 ; BC = 500m, alors on a :

    [tex]\frac{DE}{300}=\frac{DC}{500}=\frac{1000}{400}[/tex]

    DC = 500 * 1 000 / 400 = 1 250

    Le segment DC mesure 1 250m.

    DE = 300 * 1 000 / 400 = 750m

    Le segment DE mesure 750m.

    Il suffit désormais d'additionner toutes les valeurs :

    400 + 1 000 + 750 + 1 250 + 500 + 300 = 4 200

    La longueur totale du parcours est de 4 200m.